Let’s say our generic vector function form is r(t)=⟨f(t),g(t),h(t)⟩
Limits of Vector Functions
t→alimr(t)=t→alim⟨f(t),g(t),h(t)⟩=⟨t→alimf(t),t→alimg(t),t→alimh(t)⟩=t→alimf(t)i+t→alimg(t)j+t→alimh(t)k
Derivatives of Vector Functions
r′(t)=⟨f′(t),g′(t),h′(t)⟩=f′(t)i+g′(t)j+h′(t)k
Properties of Derivatives
- Addition: dtd(u+v)=u′+v′
- Constant multiple:(cu)′=cu′
- Chain rule: dtd(u⋅f(t))=f′(t)⋅u′f(t)
- Product rule:
dtd(f(t)u(t))=f′(t)u(t)+f(t)u′(t)
dtd(u⋅v)=u′⋅v+u⋅v′
dtd(u×v)=u′×v+u×v′
Integrals of Vector Functions
Indefinite:
∫r(t)dt=⟨∫f(t)dt,∫g(t)dt,∫h(t)dt⟩=∫f(t)dti+∫g(t)dtj+∫h(t)dtk+c
Definite:
∫abr(t)dt=⟨∫abf(t)dt,∫abg(t)dt,∫abh(t)dt⟩=∫abf(t)dti+∫abg(t)dtj+∫abh(t)dtk=(⟨∫f(t)dt,∫g(t)dt,∫h(t)dt⟩)ab=(∫f(t)dti,∫g(t)dtj,∫h(t)dtj)ab
Smooth Curve
- Any curve for which r(t) is continuous and r(t)=0 for any t (except maybe endpoints)
- A helix is an example of smooth curve