Using the initial relaxation parameter of 1, the solution diverges. Higher relaxation parameter values (1≤ω≤2) also caused divergence. For values of ω below 1:
Thus, the solution converge for values below approximately ω≈0.8; the least iterations achieved for all tested values occurred for ω=0.7. The Gauss-Seidel and MATLAB solutions are:
Current (mA)Gauss-Seidel:MATLAB:I12.39999972.4I21.19999691.2I30.59999790.6I40.59999840.6I50.14999890.15I60.44999740.45I70.29999670.3I80.14999960.15
Substituting into original equations to verify correctness:
Using the initial relaxation parameter of 1, the solution diverges. Higher relaxation parameter values (1≤ω≤2) also caused divergence. For values of ω below 1:
Thus, the solution converge for values below approximately ω≈0.8; the least iterations achieved for all tested values occurred for ω=0.4. The Gauss-Seidel and MATLAB solutions are:
Current (A)Gauss-Seidel:MATLAB:I15.99999896I21.99999672I34.00000204I43.00000173I50.99999991I65.00000245
Substituting into the original system of equations to verify correctness: