Proof of Perception Convergence Theorem

- $\theta^{0}=0$: Initial state of hypothesis
- $\theta^{(k)}$: Hypothesis after k mistakes
- θ^{*} : Correct hypothesis
- We want the angle between θ^{k} (current separator) and θ^{*} (good separate) to decrease L Small angle $\Rightarrow B_{i j}$ cosine
- Cosine of angle between them:

$$
\begin{aligned}
& \cos \left(\theta^{(k)}, \theta^{*}\right)=\frac{\theta^{(k)} \cdot \theta^{*}}{\left\|\theta^{(k)}\right\|\left\|\theta^{*}\right\|} \cdot \text { (Definition of dot product) } \\
& \cos \left(\theta^{(k)}, \theta^{*}\right)=\frac{\theta^{(k)} \cdot \theta^{*}}{\left\|\theta^{*}\right\|} \cdot \frac{1}{\left\|\theta^{k}\right\|}
\end{aligned}
$$

- Focusing on the first term, we assume that the $k^{\text {th }}$ mistake occurs on the $i^{\text {th }}$ example ($x^{(i)}$, $\left.y^{(i)}\right)$.

$$
\begin{aligned}
\frac{\theta^{(k)} \cdot \theta^{*}}{\left\|\theta^{*}\right\|} & =\frac{\left(\theta^{(k-1)}+y^{(c)} x^{(c)}\right) \cdot \theta^{*}}{\left\|\theta^{*}\right\|} \\
& =\frac{\theta^{(k-1)} \cdot \theta^{*}}{\left\|\theta^{*}\right\|}+\frac{y^{(i)} x^{(i)} \cdot \theta^{*}}{\left\|\theta^{*}\right\|}
\end{aligned}
$$

$\geq k \gamma$ (started from 0 and iterated k times, each time there is a γ term)

- Focusing on the $2 r d$ term, we look at $\left\|\theta^{(k)}\right\|^{2}$ for simplicity

$$
\begin{aligned}
& \left\|\theta^{(k)}\right\|^{2}=\left\|\theta^{(k-1)}+y^{(i)} x^{(i)}\right\|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { CInsififed incoromety } \\
& \text { Bomuder if } R^{2} \\
& \text { bc } y^{(6)} \in[-1,1]
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left\|\theta^{(k-1)}\right\|^{2}+R^{2} \\
& \leq k R^{2} \\
\therefore \frac{1}{\left\|\theta^{(t)}\right\|} & \geq \frac{1}{\sqrt{k} R}
\end{aligned}
$$

- Then,

$$
\begin{aligned}
& \cos \left(\theta^{(k)}, \theta^{*}\right)=\frac{\theta^{(k)} \cdot \theta^{*}}{\left\|\theta^{*}\right\|} \cdot \frac{1}{\left\|\theta^{k}\right\|} \\
& \geq k \gamma \cdot \frac{1}{\sqrt{k} R} \\
&=\sqrt{k} \cdot \frac{\gamma}{R} \\
& \operatorname{mar}_{\text {of culve }}^{\text {cosime }} \\
& \longrightarrow 1 \geq \sqrt{k} \frac{\gamma}{R} \\
& k \leq\left(\frac{R}{\gamma}\right)^{2}
\end{aligned}
$$

