Quadric Surfaces

- Any surfaces in the general form:

$$
A x^{2}+B_{y}{ }^{2}+C_{z^{2}}+D_{x y}+E_{x z}+F_{y z}+G_{x}+H_{y}+I_{z}+J=0
$$

where A, \ldots, J are constants.

- Some common quadric surfaces:

Ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

Sphere $\rightarrow a=b=c$

Cone

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z^{2}}{c^{2}}
$$

$$
\begin{aligned}
& z^{2}= c^{2}\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right)=A^{2} x^{2}+B^{2} y^{2} \\
& z= \pm \sqrt{A^{2} x^{2}+B^{2} y^{2}} \\
&+\longrightarrow T_{o p} \text { core } \\
&-\longrightarrow \text { Bottom conc } \\
& \text { Open aloy } x \text {-axis instead }: \frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=\frac{x^{2}}{a^{2}}
\end{aligned}
$$

Cylinder

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

Hyperboloid of One Sheet

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
$$

If $a=b$, the cross-section is circular, such that

$$
x^{2}+y^{2}=r^{2}
$$

- Variable with negative in front of it will give the axis along which the graph is centered

Hyperboloid of One Sheet

$$
-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

- Variable with positive in front of it will give the axis along which the graph is centered
- Opposite of 1 -sheet hyperboloid

Elliptic Paraboloid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z}{c}
$$

$a=b \rightarrow$.S. will be circle

- Variable that isn't squared is the axis upon which the paraboloid opens up
- Sign of $<$ determines the direction that the paraboloid opens

Hyperbolic Paraboloid

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=\frac{z}{c}
$$

- Saddle - shaped
- Sign of c determines direction of surface that opens up

$$
<c \text { is positive }
$$

Ex, $z=-x^{2}-y^{2}+6$

- Elliptic paraboloid that opens downward (- is on $x \$ y$ instead of z)
- Starts at $z=6$ instead of $z=0$

