Ex6) MMSE Estimation for Gaussian

Gaussian distribution $T \sim \mathcal{N}(10,2)$ C^o . A thermometer

The temperature in a class room is known to follow

is known to measure the temperature with noise, and

can be modeled as $T_m = T + v$ with Gaussian noise $v \sim$ $\mathcal{N}(0,1)$. You measured the temperature now and the thermometer says $T_m = 12$. What is the best estimate \hat{T}

of the actual temperature (in the sense of MMSE)? As always, we can assume the sensor noise v is independent from all other variables.

 $T_m = T + v$

According to MMSE: T = E[T / Tn]

 $X_{T_m T_m} = E \left[(7_m - M_{T_m})^2 \right]$

= 11.33.0

= E [(T+ N - MT) 2]

= 2 + 0 + 1 = 3

: 7 = 117 + X TTM X TTM (Tm - 117m) = 10 + 2 · 1 (12 - 10)

 $X_{TTm} = E \left[\left(T - M_T \right) \left(T_m - M_{Tm} \right) \right]$

 $= E \left[\left(T - M_7 \right) \left(T + \nu - M_7 \right) \right]$

= E[(7-M₁)2+2v(7-u₁) + v2]

 $= E[(7-u_7)^2] + 2E[v[7-u_7)] + E[v^2]$

 $T \sim \mathcal{N}(10,2)$, $V \sim \mathcal{N}(0,1)$

 $= E[(T - u_7)^2] + E[(T - u_7) u] = X_{TT} = 2$ inde pendent

= MT + XTTM XTMTM (TM - MTM)

 $M_{Tm} = E[T_m] = E[T + v] = E[T] + E[v] = M_T = 10$