Ex4) Estimating Noisy Binary Signal

- A binary signal s (either 0 or 1) is transmitted randomly with P(s = 0) = p and P(s = 1) = 1 - p for some $p \in$
- (0,1). The signal received at the receiver is analog and corrupted by Gaussian noise, i.e. $y = s + n, n \sim \mathcal{N}(0,1)$. • Assume p = 0.3. Given a measurement y = 0.1,
- what is the probability that s = 0 (or s = 1)?

- what is the probability that
$$s = 0$$
 (or $s = 1$)?
- which one is a better estimate of s between $\hat{s} = 0$ and $\hat{s} = 1$?

$$P(s=0|j) = P(y|s=0) P(s=0)$$

Given the observation/evidence y, the probability of s=0 is p(s=0|y).

$$= p(y|s = 0) p(s = 0)$$

Given S, the random varieble y is a Gaussian with its mean at S:
$$E[g|s] = 5$$

P(s=1 | y=) = 1-0.39 = 0.61

$$= \sqrt{2\pi} (1) \exp\left(-\frac{(y-0)^2}{2}\right) \cdot \rho$$

$$\frac{1}{\sqrt{2\pi} (1)} \exp\left(-\frac{(y-0)^2}{2}\right) \cdot \rho + \sqrt{2\pi} \cdot 1 = \exp\left(-\frac{(y-1)^2}{2}\right) \cdot (1-p)$$

->