Ex3) Drug Testing

- Consider a drug test procedure that has
- 1) 99% of correct positive; the test will correctly catch 99 times out of 100 drug users 2) 98% of correct negative; the test will indicate
- negative 98 times out of 100 clean subjects (non-drug users) 3) 0.5% of residents are known to be drug users
- · We took this test on a randomly selected citizen, and the result came out positive
- What is the probability that this person was, indeed, a drug user?

2)
$$P(A^{c}|B^{c}) = 0.98$$

3) $P(B) = 0.005$

P(A)

0.99 - 0.005

0.94.0.005 + 0.02 . 0.995

0.1117

P(AIB) P(B)

$$= (1 - P(A^{c}|B^{c})) (1 - P(B)) = (1 - 0.98) (1 - 0.005) = 0.02 \times 0.915$$