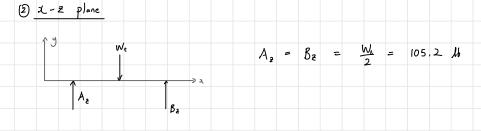

Ex 5)


values are P, d_P, d_G).	use helical g $\psi = 30^{\circ}, \phi_n$: the same (in The pinion is $\int_{A^{\circ}} \frac{10 \text{ in}}{\sqrt{2}}$	= 14.5° . put powe left-hand \overrightarrow{B}_{B}	Other r/speed, led.	P n	5, = , = 3 , = 1 , = 1 , = 1 , = 1 , = 1	io' Dhp 1800 rpm	
	$\begin{pmatrix} +an \ \phi_n \\ cos \ \psi \end{pmatrix} = fon \ \phi_e = 210.$		(2 - (2 76				
	$ \varphi_t = 210. $ $ +an \Psi = 210.1 $						
-	necd to support A and B, (1 Z						
	Tin Az	7 Ay Aa Wa	Ba	_ [¬] ₿ე			

The axial force on pinion, Wx, makes the loads on A different from those on B.

Forces on bearing
$$A$$
: $F_{r_A} = \sqrt{A_3^2 + A_2^2} = 105.3 \ lb$
 $F_{aA} = |A_x| = \frac{W_A}{2} = \frac{121.3}{2} = 60.65 \ lb$

Forces on bearing B :	$F_{r_B} = \sqrt{B_j^2 + B_z^2}$	= 115.31 Lb
)		121.3 (0.55.4)
	$F_{aB} = B_{x} = \frac{W_{x}}{2}$	$=\frac{121.3}{2}=60.65$ lb

The loads on shaft can be analyzed by the beam bending + the tarsion.