
Ex 2) Bearing Selection (comb. load)

 Assume an additional 100 N axial load. Bearing **2** is NU1010. Compute the f_s and L_{10} for 6810 (bearing 1)

Dynamic Equivalent Load	
$P = XF_r + YF_a$	

$\frac{f_0 F_a}{C_{0r}}$	e	$\frac{F_{\rm a}}{F_{\rm r}} \leq e$		$\frac{F_{\rm a}}{F_{\rm r}} > e$	
Cor		X	Y	X	Y
0.172	0.19	1	0	0.56	2.30
0.345	0.22	1	0	0.56	1.99
0.689	0.26	1	0	0.56	1.71
1.03	0.28	1	0	0.56	1.55
1.38	0.30	1	0	0.56	1.45
2.07	0.34	1	0	0.56	1.31
3.45	0.38	1	0	0.56	1.15
5.17	0.42	1	0	0.56	1.04
6.89	0.44	1	0	0.56	1.00

Static Equivalent Load $\frac{F_a}{F}$ >0.8, P_0 =0.6 F_r +0.5 F_a $\frac{F_{\rm a}}{F} \le 0.8, P_0 = F_{\rm r}$

- Bearing 2 is cylindrical coller (NU1010) with flat inner ring, thus no axial low
$$\frac{F_n}{F} = \frac{100}{250} = 0.4 \le 0.8 \implies P_0 = F_r : f_s \text{ remains the same}$$

$$f_0 = 17.2$$
, $f_0 = 6200$ N $\Rightarrow \frac{f_0 F_0}{C_0} = \frac{17.2 \times 100}{6200} = 0.2744$

$$\Rightarrow$$
 $X = 0.56$

$$\frac{F_a}{F_c} = 0.4 > e \implies X = 0.56, Y = 1.49$$

$$L_{10} = \left(\frac{c}{P}\right)^3 = \left(\frac{6100}{331}\right)^3 = \frac{6721}{6721}$$
 million revs

If we follow the same procedure, we have
$$P = F_r (X = 1, Y = 0)$$

Ly no need to consider axial land.

$$\Rightarrow L_{i,s} = \left(\frac{c}{\rho}\right)^{J} = \left(\frac{35000}{2250}\right)^{3} = 3764 \text{ million revs}$$

If we chose 6210 for bearing 2, then we can have bearing 2 support the axial lood. If we follow the same procedure, we have
$$P = F_{\mu}(X = 1, Y = 0)$$