

Ex 1) Bearing Selection (radial load)

- Select bearings such that we can achieve
- 1) the static safety factor $f_s \ge 2$
- 2) bearing fatigue life at both ends to be at least 1,000 million rev's for 10% failure rate

The minimum shaft diameter is given by 45.9 mm.

Bearing forces .	$R_1 + R_2 = 2000$			
J		No axial load =	⇒ P _o = P = ,	2250 for bearing 2
	$0.16 R_{2} = 0.18 (2000)$			(we choose this first)
=>	$R_2 = 2250 N$, $R_1 = -250 N$			

Boundary Dimensions (mm)		Basic Load Ratings (N) {kgr}		Factor	Limiting Speeds (mIn ⁻¹) Grease Oil		Bearing Numbers								
d	D	В	Г min.	$C_{\rm r}$	Cor	Cr	C_{0r}	f ₀	Open Z · ZZ V · VV	DU	Open	Open !	Shielded	Se	aled
50	65 72 80	7 12 10	0.3 0.6 0.6	6 400 14 500 15 400	6 200 11 700 12 400	655 1 480 1 570	635 1 200 1 260	17.2 16.1 16.1	9 500 9 000 8 500	5 300 5 300	11 000 11 000 10 000	6810 6910 16010	ZZ	vv	
	80 90 110	16 20 27	1 1.1 2	21 800 35 000 62 000	16 600 23 200 38 500	2 220 3 600 6 300	1 700 2 370 3 900	15.6 14.4 13.2	8 500 7 100 6 000	4 800 4 800 4 300	10 000 8 500 7 500	6010 6210 6310	ZZ ZZ ZZ	VV VV VV	

$$\Rightarrow All sizes are okay.$$
Faligue like for standard 10% failure rak.

$$L_{10} = \left(\frac{C}{P}\right)^{8} = \left(\frac{C}{2250}\right)^{3} \ge 1000 \Rightarrow C \ge 1000^{18} \times 2500 = 22.5 \text{ km}$$

$$\Rightarrow 5210 (D = 97, R = 20) = 0.5 \text{ (210)} (D = 119, R = 27)$$

(2) For roller bearings,
$$f_s \quad OK \quad f_{s-all} \quad sizes$$

 $L_{10} = \left(\begin{array}{c} C \\ P \end{array}\right)^{19}e \geq 1000 \implies C \geq 1000^{\frac{3}{10}} \times 2250 = 17.87 \text{ kN}$
 $\Longrightarrow \quad All \quad sizes \quad are \quad OK , \quad chase \quad 1010 \quad (D = 80, B = 16)$

2) For bearing 1

$$C \ge 1000^{\frac{3}{5}} \times 250 = 2500 \implies Wk \ cm \ chose \ 6610$$
$$\implies f_{5} = \frac{C_{0}}{P_{0}} = \frac{6200}{250} = 246, \ L_{10} = \left(\frac{6400}{250}\right)^{\frac{3}{5}} = \frac{16780}{16780} \ million \ revs$$