

$$
\frac{d^{2} T}{d x^{2}}=0 \rightarrow \frac{d T}{d x}=C_{1} \rightarrow T(x)=C_{1} x+C_{2}
$$

Apply boundary conditions:

$$
\begin{aligned}
& \text { @ } x=0, T=T_{1} \quad \therefore C_{2}=T_{1} \\
& @ x=L, T=T_{2} \quad \therefore T_{2}=C_{1} L+T_{1} \quad \rightarrow C_{1}=\frac{T_{2}-T_{1}}{L}
\end{aligned}
$$

What is $T(x)$?
$\therefore T(x)=\left(\frac{T_{2}-T_{1}}{L}\right) x+T_{1} \longleftarrow$ Now we have T every where in the wall

$$
\begin{aligned}
& \frac{d T}{d x}=\frac{T_{2}-T_{1}}{L} \\
& \dot{Q}^{\prime \prime}=-k \frac{d T}{d x}=-k\left(\frac{T_{2}-T_{1}}{L}\right) \\
& \dot{Q}=-k A\left(\frac{T_{2}-T_{1}}{C}\right)
\end{aligned}
$$

- This analysis yields "local" values - can find temp. eveguntree in url
- We can we different boundary conditions es for different scenarios

$$
\rightarrow \text { ex: } \frac{d T}{d x}=\text { fixed }
$$

