Example

A thin electronic component with a surface area of $950 \mathrm{~cm}^{2}$ is cooled by having a heat sink on its top surface with thermal Resistance, $R_{\text {heat sink }}$. The electronic component dissipates 45 W of heat through an interface with conductivity, h_{c}, to surroundings at $30^{\circ} \mathrm{C}$.

What is the temperature of the electronic component
Does the heat sink play a significant role in heat dissipation?

$T_{\text {surf }}=30^{\circ} \mathrm{C}$
$R_{\text {heat sink }}=0.3 \mathrm{~K} / \mathrm{W}$

- All heat leavis through heat sink

$\dot{Q}=\frac{T_{s}-T_{\text {sure }}}{R_{\text {total }}}$
$R_{\text {total }}=R_{\text {inter face }}+R_{\text {heat sink }}$
$\left.=\frac{1}{2000\left[W / \mathrm{m}^{2} \mathrm{~K}\right]\left(950 \mathrm{~cm}^{2}\right)\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)^{2}}+0.\right][\mathrm{K} / \mathrm{W}]$
$=0.3053[\mathrm{k} / \mathrm{w}]$
$T_{s}=T_{\text {sur }}+\dot{Q} R_{\text {total }}$
$=30^{\circ} \mathrm{C}+45[\mathrm{w}] \times 0.3053[\mathrm{~K} / \mathrm{w}]$
$=43.7^{\circ} \mathrm{C}$
$\frac{R_{\text {interface }}}{R_{12+1}}=\frac{0.0053}{0.3053}=1.74 \%$

