A system is called “bounded input/bounded output” (BIBO) stable if and only if for every bounded input, the output is bounded.
Continuous time:
∣x(t)∣≤Mx<∞→∣y(t)∣≤My<∞
Discrete time:
∣x[n]∣≤Mx<∞→∣y[n]∣≤My<∞
where Mx,My are positive, finite values.
Stable Example
Moving average system:
y[n]=31(x[n]+x[n−1]+x[n−2])
Assume bounded input
∣x[n]∣∣y[n]∣∣y[n]∣∣y[n]∣∣y(n)∣≤Mx<∞for all n=31∣x[n]+x[n−1]+x[n−2]∣≤31(x[n]+x[n−1]+x[n−2])≤31(Mx+Mx+Mx)≤∞∴BIBO stable
Unstable Example
System:
y(t)=t2x(t)x(t)=u(t)
Thus
∣y(t)∣=∣t2x(t)∣as t→∞∣y(t)∣→∞∴BIBO unstable