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Computer vision and machine 
learning are playing an increasingly 
important role in 
computer-assisted diagnosis. While 
promising, the application of deep 
learning to medical imaging still 
faces challenges. These include: 

• Limited data — Datasets for 
novel diseases are often very 
small, requiring transfer 
learning, which is dependent on 
label quality.

• Class imbalance — More 
negative (benign) data samples 
than positive (malignant) ones, 
resulting in biased models.

• Low trustworthiness — Trust is 
important in medical settings. 
Deep NNs optimized with the 
cross-entropy loss function tend 
to be overly cautious for the 
minority class, while being 
overconfident for the majority 
class.

The goal(s) of this study were to:

1. Use a combination of 
supervised and self-supervised 
contrastive pre-training to 
make transfer learning more 
efficient and less reliant on 
labels.

2. Combat data imbalance and 
trustworthiness problems 
(quantified by a trust score [1]) 
by using Deep AUC 
Maximization with AUC 
min-max margin loss.
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Conclusions

- We propose a general deep 
learning framework for medical 
image analysis which can be used 
to build high-performing, 
high-trust models;

- We show that fine-tuned models 
with self-supervised pre-training 
surpass supervised ones for 
COVID-19 classification, including 
state-of-the-art deep learning 
models designed specifically for 
the task;

- AUC maximization with margin 
loss leads to more effective 
feature learning and higher 
trustworthiness, effectively 
dealing with the problems of 
class imbalance and prediction 
under/over-confidence

• Validation with other datasets, 
including different diseases

• Exploring model explainability 
and interpretability

• Generative models to address 
data scarcity & imbalance issues

• Exploring different backbone 
architectures — Vision 
Transformers instead of CNNs

Figure 1. Overview of proposed framework
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Figure 2. Contrastive SSL with SimCLR [2]
Figure 3. AUC maximization and AUC 

min-max margin loss[3]

Dataset: COVIDx8B

● Chest radiograph (X-ray) dataset 
for COVID-19 binary 
classification

● Unseen test split
● Small and unbalanced

● Out-performs past SOTA models 
(custom architecture, designed for 
task)

● Ablation study shows improvement 
in performance & trust from each 
module

● Generalization capabilities with other 
SSL model architectures and 
pre-training datasets
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Minimize variance of prediction 
scores on pos./neg. data

Tunable margin 
hyperparameter

Squared hinge function (widely used 
in  margin-based SVM classifiers)

AUC score — Area under the 
ROC (receiver operating 
characteristic) curve

● We optimize with AUC 
instead of cross-entropy 
loss for better trust

● Naive pairwise loss based on definition of AUC score from 
scalability issues

● AUC margin loss is defined as:

Trust score computation: Given a question x, an answer y with respect to a model M, such that y = M(x), and z representing 

the correct answer to x, we then use Ry=z | M to denote the space of all questions where the answer y given by model M 

matches the correct answer z. Likewise, we use Ry≠z | M to denote the space of all questions where the answer y given by model 

does not match the correct answer. We also define the confidence of M in an answer y to question x as C(y | x). Thus, 

question-answer trust of an answer y given by model M of a question x, with knowledge of the correct answer z, is defined as: with 𝛼 and 𝛽 denoting reward and penalty relaxation coefficients.
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