

Introduction

Background

Computer vision and machine learning are playing an increasingly important role in computer-assisted diagnosis. While promising, the application of **deep learning** to medical imaging still faces challenges. These include:

- Limited data Datasets for novel diseases are often very small, requiring transfer learning, which is dependent on label quality.
- **Class imbalance** More negative (benign) data samples than positive (malignant) ones, resulting in biased models.
- Low trustworthiness Trust is important in medical settings. Deep NNs optimized with the cross-entropy loss function tend to be overly cautious for the minority class, while being overconfident for the majority class.

Goal

The goal(s) of this study were to:

- Use a combination of supervised and self-supervised **contrastive pre-training** to make transfer learning more efficient and less reliant on labels.
- Combat data imbalance and trustworthiness problems (quantified by a trust score [1]) by using **Deep AUC** Maximization with AUC min-max margin loss.

Metho	lology			
Natural In Second Sec	nage Data (labeled) R Supervised Pre-training	epresentation	Iearning Minimize Cross Entropy
D	ataset: (COVIDx	8B	
Tabl	<i>e 1:</i> Data sp	olit for COVI	Dx 8B	
Split	Negative	Positive	Total	-
Train Test	13,793 200	2,158 200	15,951 400	_
 Chest for G class Unse Sma Trust score the correct matches the does not matches th	st radiogra COVID-19 k sification een test sp Il and unb computation: answer to x, w e correct answer atch the correct swer trust of a	aph (X-ray) binary blit alanced Given a questic e then use $R_{y=2}$ er z. Likewise, we ct answer. We a in answer y give	dataset dataset $x, an answerx, an answerx \in use R_{y\neq z}also define ten by mode$	wer y witten the sp $_{M}$ to der he conficted M of a conficted
D 1				
Kesults				
 Out-pe (custor task) Table 2: Model 2, COVID-Net Content 	rforms pa n architec performance ar XR-3 and COV	st SOTA m ture, desig	odels gned for	et CXR-
Model	Precis	sion Se	nsitivity	Trust
COVID-Net CXF	Pos. R-2 0.970	Neg.Pos.0.9550.956	Neg. 6 0.970	-
COVID-Net CXF COVID-CXR-SS	R-3 0.990 SL 1.000	0.975 0.975 0.980 0.98	5 0.990) 1.000	0.964

[1] A. Wong, X. Y. Wang, and A. Hryniowski, "How much can we really trust you? towards simple, interpretable trust quantification metrics for deep neural networks," CoRR, vol. abs/2009.05835, 2020. [Online]. Available: https://arxiv.org/abs/2009.05835 [2] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, "A simple framework for contrastive learning of visual representations," in International conference on machine learning 2020 Nov 21 (pp. 1597-1607). PMLR. [3] Z. Yuan, Y. Yan, M. Sonka and T. Yang, "Large-scale Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification," in 2021 IEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 2021 pp. 3020-3029.

A Trustworthy Framework for Medical Image Analysis with Deep Learning

Kai Ma^a (k78ma@uwaterloo.ca), Siyuan He^a, Pengcheng Xi^{a,b}, Ashkan Ebadi^{a,b}, Stephane Tremblay^b, Alexander Wong^a ^aFaculty of Engineering, University of Waterloo, Canada ^bNational Research Council Canada

module

Table 3: Ablation study on model performance and trust scores for different model architectures

Architecture	Precision		Sensitivity		Trust	SSL plugin	Precision		Sensitivity		Trust
	Pos.	Neg.	Pos.	Neg.			Pos.	Neg.	Pos.	Neg.	
SL SL+SSL SL+SSL+AUC	1.000 1.000 1.000	0.885 0.939 0.952	0.870 0.935 0.950	1.000 1.000 1.000	0.918 0.952 0.954	MoCo (<i>MIMIC-CXR</i>) MoCo (<i>ImageNet</i>) SimCLR (<i>ImageNet</i>)	0.995 0.998 1.000	0.896 0.934 0.952	0.884 0.930 0.950	0.995 0.998 1.000	0.909 0.93 0.95

pre-training datasets

Table 4: Model performance and trust scores for different SSL plug-

Annual Conference on Vision & Intelligent Systems

Conclusions

- We propose a **general deep** learning framework for medical image analysis which can be used to build high-performing, high-trust models;
- We show that fine-tuned models with self-supervised pre-training surpass supervised ones for COVID-19 classification, including state-of-the-art deep learning models designed specifically for the task;
- AUC maximization with margin loss leads to more effective feature learning and higher trustworthiness, effectively dealing with the problems of class imbalance and prediction under/over-confidence

Future Directions

- Validation with other datasets, including different diseases
- Exploring model explainability and interpretability
- Generative models to address data scarcity & imbalance issues
- Exploring different backbone architectures — Vision Transformers instead of CNNs

This work was supported by National Research Council Canada's Pandemic Response Challenge Program. It was also supported by the Natural Sciences and Engineering Research Council of Canada and Canada Research Chairs Program. The authors thank the COVID-Net team of University of Waterloo's VIP lab for their continued support.