TOWARD TRUSTWORTHY HEALTHCARE AI: ATTENTION-BASED FEATURE LEARNING FOR COVID-19 WITH CHEST RADIOGRAPHY

7/22/2022

Kai Ma, Pengcheng Xi, Karim Habashy, Ashkan Ebadi, Stéphane Tremblay, Alexander Wong

Faculty of Engineering, University of Waterloo

Digital Technologies Research Centre, National Research Council Canada

OVERVIEW

- Evaluation of CNNs and Transformer deep learning architectures
 - Traditional CNN approach vs. Attention mechanism
 - Representation learning capability for chest X-ray (CXR) classification
- Model performance Precision, Sensitivity
- Model trustworthiness
 - Trust Score Wong et. al., 2020
 - Visualization AblationCAM

MOTIVATION

- Importance of trust in medical AI
 - Explainability of results and model confidence are crucial
 - Quantifiable metric
- Transformer's potential architectural advantages
 - CNNs have inductive biases
 - Attention mechanism analogous to imaging evaluation by doctors
- Fair evaluation of localization maps
 - Existing literature uses visualization techniques that are specific to architecture

METHODOLOGY - MODEL ARCHITECTURE

- Models:
 - ResNet-50
 - DenseNet-121
 - Swin Transformer

METHODOLOGY - DATASET, TRUST QUANTIFICATION

- Dataset: COVIDxV9B
 - Combination of data repositories (RSNA, etc)
 - 10% of training set sampled for validation
- Trust score computation:
 - Penalize undeserved confidence, reward well-placed confidence
- AblationCAM
 - Localization maps through ablation analysis

Table 1. Data split for COVIDx V9B

SPLIT	NEGATIVE	POSITIVE	TOTAL
TRAIN	13,992	15,950	30,482
TEST	200	200	400

$$Q_z(x,y) = \begin{cases} C(y \mid x)^{\alpha}, & \text{if } x \in R_{y=z|M} \\ (1 - C(y \mid x))^{\beta}, & \text{if } x \in R_{y \neq z|M}, \end{cases}$$

RESULTS - PERFORMANCE & TRUST SCORE

Table 3. Precision scores on the unseen COVIDx V9B test split. The best results in each class are bolded.

MODEL	NEGATIVE	POSITIVE
RESNET (200 EPOCHS)	0.952	1.000
DENSENET (200 EPOCHS)	0.948	0.995
SWIN-B (30 EPOCHS)	0.926	1.000
SWIN-B (50 EPOCHS)	0.935	1.000
SWIN-B (100 EPOCHS)	0.930	1.000
SWIN-B (200 EPOCHS)	0.952	1.000

Table 4. Sensitivity scores on the unseen COVIDx V9B test split. The best results in each class are bolded.

MODEL	NEGATIVE	POSITIVE
RESNET (200 EPOCHS)	1.000	0.950
DENSENET (200 EPOCHS)	0.995	0.945
SWIN-B (30 EPOCHS)	1.000	0.920
SWIN-B (50 EPOCHS)	1.000	0.930
SWIN-B (100 EPOCHS)	1.000	0.925
SWIN-B (200 EPOCHS)	1.000	0.950

Table 5. Trust scores calculated from each experiment on the positive class. The best result is bolded.

MODEL	TRUST SCORE	
ResNet (200 epochs)	0.923	
DenseNet (200 epochs)	0.922	
SWIN-B (30 EPOCHS)	0.943	
SWIN-B (50 EPOCHS)	0.959	
SWIN-B (100 EPOCHS)	0.954	
SWIN-B (200 EPOCHS)	0.963	

RESULTS - VISUALIZATION

(a) Original chest radiographs for positive COVID-19 samples

(b) Swin-B 200-epoch Ablation-CAM

(c) ResNet-50 200-epoch Ablation-CAM

WHAT'S NEXT?

- Comparison against newer, leading CNNs and different Transformer models
 - ConvNeXt, NFNet
 - Swin-L, CoCa, MaxViT
- Further validation of results on other datasets
 - SIIM-FISABIO-RSNA, 3-class COVIDx
- Exploration of data-hungriness of Transformers
- Departure from model evaluation to introducing more novelty

THANKS FOR LISTENING!

Feel free to ask any questions!

